[e16e8f2] | 1 | /* |
---|
| 2 | * jidctflt.c |
---|
| 3 | * |
---|
| 4 | * Copyright (C) 1994-1998, Thomas G. Lane. |
---|
| 5 | * This file is part of the Independent JPEG Group's software. |
---|
| 6 | * |
---|
| 7 | * The authors make NO WARRANTY or representation, either express or implied, |
---|
| 8 | * with respect to this software, its quality, accuracy, merchantability, or |
---|
| 9 | * fitness for a particular purpose. This software is provided "AS IS", and you, |
---|
| 10 | * its user, assume the entire risk as to its quality and accuracy. |
---|
| 11 | * |
---|
| 12 | * This software is copyright (C) 1991-1998, Thomas G. Lane. |
---|
| 13 | * All Rights Reserved except as specified below. |
---|
| 14 | * |
---|
| 15 | * Permission is hereby granted to use, copy, modify, and distribute this |
---|
| 16 | * software (or portions thereof) for any purpose, without fee, subject to these |
---|
| 17 | * conditions: |
---|
| 18 | * (1) If any part of the source code for this software is distributed, then this |
---|
| 19 | * README file must be included, with this copyright and no-warranty notice |
---|
| 20 | * unaltered; and any additions, deletions, or changes to the original files |
---|
| 21 | * must be clearly indicated in accompanying documentation. |
---|
| 22 | * (2) If only executable code is distributed, then the accompanying |
---|
| 23 | * documentation must state that "this software is based in part on the work of |
---|
| 24 | * the Independent JPEG Group". |
---|
| 25 | * (3) Permission for use of this software is granted only if the user accepts |
---|
| 26 | * full responsibility for any undesirable consequences; the authors accept |
---|
| 27 | * NO LIABILITY for damages of any kind. |
---|
| 28 | * |
---|
| 29 | * These conditions apply to any software derived from or based on the IJG code, |
---|
| 30 | * not just to the unmodified library. If you use our work, you ought to |
---|
| 31 | * acknowledge us. |
---|
| 32 | * |
---|
| 33 | * Permission is NOT granted for the use of any IJG author's name or company name |
---|
| 34 | * in advertising or publicity relating to this software or products derived from |
---|
| 35 | * it. This software may be referred to only as "the Independent JPEG Group's |
---|
| 36 | * software". |
---|
| 37 | * |
---|
| 38 | * We specifically permit and encourage the use of this software as the basis of |
---|
| 39 | * commercial products, provided that all warranty or liability claims are |
---|
| 40 | * assumed by the product vendor. |
---|
| 41 | * |
---|
| 42 | * |
---|
| 43 | * This file contains a floating-point implementation of the |
---|
| 44 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
---|
| 45 | * must also perform dequantization of the input coefficients. |
---|
| 46 | * |
---|
| 47 | * This implementation should be more accurate than either of the integer |
---|
| 48 | * IDCT implementations. However, it may not give the same results on all |
---|
| 49 | * machines because of differences in roundoff behavior. Speed will depend |
---|
| 50 | * on the hardware's floating point capacity. |
---|
| 51 | * |
---|
| 52 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
---|
| 53 | * on each row (or vice versa, but it's more convenient to emit a row at |
---|
| 54 | * a time). Direct algorithms are also available, but they are much more |
---|
| 55 | * complex and seem not to be any faster when reduced to code. |
---|
| 56 | * |
---|
| 57 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
---|
| 58 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
---|
| 59 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
---|
| 60 | * JPEG textbook (see REFERENCES section in file README). The following code |
---|
| 61 | * is based directly on figure 4-8 in P&M. |
---|
| 62 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
---|
| 63 | * possible to arrange the computation so that many of the multiplies are |
---|
| 64 | * simple scalings of the final outputs. These multiplies can then be |
---|
| 65 | * folded into the multiplications or divisions by the JPEG quantization |
---|
| 66 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
---|
| 67 | * to be done in the DCT itself. |
---|
| 68 | * The primary disadvantage of this method is that with a fixed-point |
---|
| 69 | * implementation, accuracy is lost due to imprecise representation of the |
---|
| 70 | * scaled quantization values. However, that problem does not arise if |
---|
| 71 | * we use floating point arithmetic. |
---|
| 72 | */ |
---|
| 73 | |
---|
| 74 | #include <stdint.h> |
---|
| 75 | #include "tinyjpeg-internal.h" |
---|
| 76 | |
---|
| 77 | #define FAST_FLOAT float |
---|
| 78 | #define DCTSIZE 8 |
---|
| 79 | #define DCTSIZE2 (DCTSIZE*DCTSIZE) |
---|
| 80 | |
---|
| 81 | #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
---|
| 82 | |
---|
| 83 | #if 1 && defined(__GNUC__) && (defined(__i686__) || defined(__x86_64__)) |
---|
| 84 | |
---|
| 85 | static inline unsigned char descale_and_clamp(int x, int shift) |
---|
| 86 | { |
---|
| 87 | __asm__ ( |
---|
| 88 | "add %3,%1\n" |
---|
| 89 | "\tsar %2,%1\n" |
---|
| 90 | "\tsub $-128,%1\n" |
---|
| 91 | "\tcmovl %5,%1\n" /* Use the sub to compare to 0 */ |
---|
| 92 | "\tcmpl %4,%1\n" |
---|
| 93 | "\tcmovg %4,%1\n" |
---|
| 94 | : "=r"(x) |
---|
| 95 | : "0"(x), "Ir"(shift), "ir"(1UL<<(shift-1)), "r" (0xff), "r" (0) |
---|
| 96 | ); |
---|
| 97 | return x; |
---|
| 98 | } |
---|
| 99 | |
---|
| 100 | #else |
---|
| 101 | static inline unsigned char descale_and_clamp(int x, int shift) |
---|
| 102 | { |
---|
| 103 | x += (1UL<<(shift-1)); |
---|
| 104 | if (x<0) |
---|
| 105 | x = (x >> shift) | ((~(0UL)) << (32-(shift))); |
---|
| 106 | else |
---|
| 107 | x >>= shift; |
---|
| 108 | x += 128; |
---|
| 109 | if (x>255) |
---|
| 110 | return 255; |
---|
| 111 | else if (x<0) |
---|
| 112 | return 0; |
---|
| 113 | else |
---|
| 114 | return x; |
---|
| 115 | } |
---|
| 116 | #endif |
---|
| 117 | |
---|
| 118 | /* |
---|
| 119 | * Perform dequantization and inverse DCT on one block of coefficients. |
---|
| 120 | */ |
---|
| 121 | |
---|
| 122 | void |
---|
| 123 | tinyjpeg_idct_float (struct component *compptr, uint8_t *output_buf, int stride) |
---|
| 124 | { |
---|
| 125 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
---|
| 126 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
---|
| 127 | FAST_FLOAT z5, z10, z11, z12, z13; |
---|
| 128 | int16_t *inptr; |
---|
| 129 | FAST_FLOAT *quantptr; |
---|
| 130 | FAST_FLOAT *wsptr; |
---|
| 131 | uint8_t *outptr; |
---|
| 132 | int ctr; |
---|
| 133 | FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
---|
| 134 | |
---|
| 135 | /* Pass 1: process columns from input, store into work array. */ |
---|
| 136 | |
---|
| 137 | inptr = compptr->DCT; |
---|
| 138 | quantptr = compptr->Q_table; |
---|
| 139 | wsptr = workspace; |
---|
| 140 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
---|
| 141 | /* Due to quantization, we will usually find that many of the input |
---|
| 142 | * coefficients are zero, especially the AC terms. We can exploit this |
---|
| 143 | * by short-circuiting the IDCT calculation for any column in which all |
---|
| 144 | * the AC terms are zero. In that case each output is equal to the |
---|
| 145 | * DC coefficient (with scale factor as needed). |
---|
| 146 | * With typical images and quantization tables, half or more of the |
---|
| 147 | * column DCT calculations can be simplified this way. |
---|
| 148 | */ |
---|
| 149 | |
---|
| 150 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
---|
| 151 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
---|
| 152 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
---|
| 153 | inptr[DCTSIZE*7] == 0) { |
---|
| 154 | /* AC terms all zero */ |
---|
| 155 | FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
---|
| 156 | |
---|
| 157 | wsptr[DCTSIZE*0] = dcval; |
---|
| 158 | wsptr[DCTSIZE*1] = dcval; |
---|
| 159 | wsptr[DCTSIZE*2] = dcval; |
---|
| 160 | wsptr[DCTSIZE*3] = dcval; |
---|
| 161 | wsptr[DCTSIZE*4] = dcval; |
---|
| 162 | wsptr[DCTSIZE*5] = dcval; |
---|
| 163 | wsptr[DCTSIZE*6] = dcval; |
---|
| 164 | wsptr[DCTSIZE*7] = dcval; |
---|
| 165 | |
---|
| 166 | inptr++; /* advance pointers to next column */ |
---|
| 167 | quantptr++; |
---|
| 168 | wsptr++; |
---|
| 169 | continue; |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | /* Even part */ |
---|
| 173 | |
---|
| 174 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
---|
| 175 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
---|
| 176 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
---|
| 177 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
---|
| 178 | |
---|
| 179 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
---|
| 180 | tmp11 = tmp0 - tmp2; |
---|
| 181 | |
---|
| 182 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
---|
| 183 | tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
---|
| 184 | |
---|
| 185 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
---|
| 186 | tmp3 = tmp10 - tmp13; |
---|
| 187 | tmp1 = tmp11 + tmp12; |
---|
| 188 | tmp2 = tmp11 - tmp12; |
---|
| 189 | |
---|
| 190 | /* Odd part */ |
---|
| 191 | |
---|
| 192 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
---|
| 193 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
---|
| 194 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
---|
| 195 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
---|
| 196 | |
---|
| 197 | z13 = tmp6 + tmp5; /* phase 6 */ |
---|
| 198 | z10 = tmp6 - tmp5; |
---|
| 199 | z11 = tmp4 + tmp7; |
---|
| 200 | z12 = tmp4 - tmp7; |
---|
| 201 | |
---|
| 202 | tmp7 = z11 + z13; /* phase 5 */ |
---|
| 203 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
---|
| 204 | |
---|
| 205 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
---|
| 206 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
---|
| 207 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
---|
| 208 | |
---|
| 209 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
---|
| 210 | tmp5 = tmp11 - tmp6; |
---|
| 211 | tmp4 = tmp10 + tmp5; |
---|
| 212 | |
---|
| 213 | wsptr[DCTSIZE*0] = tmp0 + tmp7; |
---|
| 214 | wsptr[DCTSIZE*7] = tmp0 - tmp7; |
---|
| 215 | wsptr[DCTSIZE*1] = tmp1 + tmp6; |
---|
| 216 | wsptr[DCTSIZE*6] = tmp1 - tmp6; |
---|
| 217 | wsptr[DCTSIZE*2] = tmp2 + tmp5; |
---|
| 218 | wsptr[DCTSIZE*5] = tmp2 - tmp5; |
---|
| 219 | wsptr[DCTSIZE*4] = tmp3 + tmp4; |
---|
| 220 | wsptr[DCTSIZE*3] = tmp3 - tmp4; |
---|
| 221 | |
---|
| 222 | inptr++; /* advance pointers to next column */ |
---|
| 223 | quantptr++; |
---|
| 224 | wsptr++; |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | /* Pass 2: process rows from work array, store into output array. */ |
---|
| 228 | /* Note that we must descale the results by a factor of 8 == 2**3. */ |
---|
| 229 | |
---|
| 230 | wsptr = workspace; |
---|
| 231 | outptr = output_buf; |
---|
| 232 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
---|
| 233 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
---|
| 234 | * However, the column calculation has created many nonzero AC terms, so |
---|
| 235 | * the simplification applies less often (typically 5% to 10% of the time). |
---|
| 236 | * And testing floats for zero is relatively expensive, so we don't bother. |
---|
| 237 | */ |
---|
| 238 | |
---|
| 239 | /* Even part */ |
---|
| 240 | |
---|
| 241 | tmp10 = wsptr[0] + wsptr[4]; |
---|
| 242 | tmp11 = wsptr[0] - wsptr[4]; |
---|
| 243 | |
---|
| 244 | tmp13 = wsptr[2] + wsptr[6]; |
---|
| 245 | tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
---|
| 246 | |
---|
| 247 | tmp0 = tmp10 + tmp13; |
---|
| 248 | tmp3 = tmp10 - tmp13; |
---|
| 249 | tmp1 = tmp11 + tmp12; |
---|
| 250 | tmp2 = tmp11 - tmp12; |
---|
| 251 | |
---|
| 252 | /* Odd part */ |
---|
| 253 | |
---|
| 254 | z13 = wsptr[5] + wsptr[3]; |
---|
| 255 | z10 = wsptr[5] - wsptr[3]; |
---|
| 256 | z11 = wsptr[1] + wsptr[7]; |
---|
| 257 | z12 = wsptr[1] - wsptr[7]; |
---|
| 258 | |
---|
| 259 | tmp7 = z11 + z13; |
---|
| 260 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
---|
| 261 | |
---|
| 262 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
---|
| 263 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
---|
| 264 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
---|
| 265 | |
---|
| 266 | tmp6 = tmp12 - tmp7; |
---|
| 267 | tmp5 = tmp11 - tmp6; |
---|
| 268 | tmp4 = tmp10 + tmp5; |
---|
| 269 | |
---|
| 270 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
---|
| 271 | |
---|
| 272 | outptr[0] = descale_and_clamp((int)(tmp0 + tmp7), 3); |
---|
| 273 | outptr[7] = descale_and_clamp((int)(tmp0 - tmp7), 3); |
---|
| 274 | outptr[1] = descale_and_clamp((int)(tmp1 + tmp6), 3); |
---|
| 275 | outptr[6] = descale_and_clamp((int)(tmp1 - tmp6), 3); |
---|
| 276 | outptr[2] = descale_and_clamp((int)(tmp2 + tmp5), 3); |
---|
| 277 | outptr[5] = descale_and_clamp((int)(tmp2 - tmp5), 3); |
---|
| 278 | outptr[4] = descale_and_clamp((int)(tmp3 + tmp4), 3); |
---|
| 279 | outptr[3] = descale_and_clamp((int)(tmp3 - tmp4), 3); |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | wsptr += DCTSIZE; /* advance pointer to next row */ |
---|
| 283 | outptr += stride; |
---|
| 284 | } |
---|
| 285 | } |
---|